
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Interactive Topic Modeling

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Quentin Pleple

Committee in charge:

Professor Charles Elkan, Chair
Professor Sanjoy Dasgupta
Professor Mohan Paturi

2013

Copyright

Quentin Pleple, 2013

All rights reserved.

The Thesis of Quentin Pleple is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2013

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Abstract of the Thesis . ix

Chapter 1 Background . 1

1.1 Bayesian inference . 1

1.2 Approximation methods for Bayesian inference 2

1.3 Linear topic modeling . 3

1.4 Probabilistic topic modeling 4

1.5 Latent Dirichlet Allocation . 7

Chapter 2 Evaluating topic models . 9

2.1 Perplexity . 9

2.2 Perplexity is not strongly correlated to human judgment 10

2.3 Modeling human judgment . 11

2.3.1 Topic coherence . 11

2.3.2 Extrinsic UCI measure 12

2.3.3 Intrinsic UMass measure 13

2.4 On smoothing in topic coherence measures 14

Chapter 3 Word relevance within a topic . 16

3.1 Word distinctiveness and saliency 16

3.2 Word relevance for a topic . 17

3.3 Computation of word relevance measure 18

iv

3.4 Top relevant word to describe topics 19

3.5 Coherence of topics described by top words by relevance 21

3.6 Using PMI for topic relevance 25

3.7 Conclusion . 26

Chapter 4 Interactive LDA . 27

4.1 Previous work . 27

4.2 Variational Expectation-Maximization 30

4.3 Interpretation of Dirichlet parameters � 32

4.4 Types of user feedback . 33

4.5 Removing words from topics 34

4.6 Deleting topics . 39

4.7 Merging topics . 40

4.8 Splitting topics . 43

4.9 Experimental Design . 45

4.10 Conclusion . 47

v

LIST OF FIGURES

Figure 1.1: pLSI model . 6

Figure 1.2: LDA model . 8

Figure 2.1: Both topic coherence measures UCI and UMass are based on the sumP
i<j score(wi, wj) of the pairwise scores of the n top words w1, ..., wn

of the topic. 13

Figure 3.1: These figures illustrate how the exponential entropy eH measures the
extent of a distribution. Distribution (a) has only one word as support,
and eH = 1. Distribution (b) is spanning only two words, but not uni-
formly so its exponential entropy is slightly below two. Distribution (c)
is spanning uniformly K words, and eH = K. 18

Figure 3.2: Distribution over 30 topics of the improvement factor ⇢k of topic UCI
coherence from top words by frequency to top words by relevance for
four datasets. Green bars indicate ranges where topic coherence is
increased (⇢k > 1). 22

Figure 3.3: Distribution over 30 topics of the improvement factor ⇢k of topic UMass
coherence from top words by frequency to top words by relevance for
four datasets. Green bars are for ⇢k > 1. 23

Figure 3.4: Distribution over 100 topics of the improvement factor ⇢k of topic UCI
coherence from top words by frequency to top words by relevance for
four datasets. Green bars are for ⇢k > 1. 24

Figure 3.5: Distribution over 100 topics of the improvement factor ⇢k of topic
coherence according to the intrinsic PMI-based coherence measure.
Green bars are for ⇢k > 1. 24

Figure 4.1: Plate notation illustrating the changes made to approximate the posterior
by Variational EM. 30

Figure 4.2: Distribution of the fraction of the count of the deleted word that comes
back to the topic after removal. 37

Figure 4.3: Distribution of the number of documents containing the removed word
for words that did (green) and did not (red) come back. The green series
keeps going after 22, but what is important to notice is that the red stops
at a count of four documents. 38

Figure 4.4: Distribution of the fraction of the count of the deleted word that comes
back to the topic after removal with the new strategy. 39

vi

LIST OF TABLES

Table 1.1: Definition of symbols . 5

Table 3.1: Three topics extracted from the output of LDA run on the corpus [20news]
with 30 topics. For each topic, we give the top words according to fre-
quency p(w|k) and relevance p(w|k)e�Hw 20

Table 3.2: Six topics extracted from the output of LDA run on the highly specialized
corpus [nips] with 30 topics. For each topic, we give the top words by
frequency p(w|k) and relevance p(w|k)e�Hw 21

Table 4.1: Factors controlling topic assignment dwk of word w in document d . . . 35

Table 4.2: Top words of one topic discovered by running LDA on corpus [20news]
with 30 topics, before and after removing words israel and lebanese, and
running LDA until convergence. 36

Table 4.3: Distribution over topics of the top words of the topic to be deleted, before
and after deleting it. Experiment done after running LDA on the corpus
[20news] with 30 topics until convergence. 40

Table 4.4: Distribution over topics of the top words of the two topic to be merged,
before and after the merging. Experiment done after running LDA on
the corpus [20news] with 30 topics until convergence. 42

Table 4.5: Topic “Politics” has been split into two topics using seed words republi-
can and bush for the first, and democrats, bentsen, and democratic for
the second. LDA was then run until convergence. 44

Table 4.6: Distribution over topics of the top words of the two topic that have been
split, after the split. Experiment done after running LDA on the corpus
[20news] with 30 topics until convergence. 45

Table 4.7: The number of times a word has been chosen as an intruder by AMT users. 46

vii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Charles Elkan for the always

relevant feedback and useful discussions. Furthermore, I would like to thank Rakesh Varna

for his unflagging and continuous support, and Russell Reas for being a solid partner. I

am finally grateful to Christopher Tosh for his encouragement, Matus Telgarsky for his

insightful comments and support.

viii

ABSTRACT OF THE THESIS

Interactive Topic Modeling

by

Quentin Pleple

Master of Science in Computer Science

University of California, San Diego, 2013

Professor Charles Elkan, Chair

Topics discovered by the latent Dirichlet allocation (LDA) method are sometimes not

meaningful for humans. The goal of our work is to improve the quality of topics presented

to end-users. Our contributions are two-fold. First, we present a new way of picking words

to represent a topic. Instead of simply selecting the top words by frequency, by penalizing

words that are shared across multiple topics, we down-weight background words and reveal

what is specific about each topic. Second, we present a novel method for interactive topic

modeling. The method allows the user to give live feedback on the topics, and allows the

inference algorithm to use that feedback to guide the LDA parameter search. The user can

indicate that words should be removed from a topic, that topics should be merged, and/or

ix

that a topic should be split, or deleted. After each item of user feedback, we change the

internal state of the variational EM algorithm in a way that preserves correctness, then re-run

the algorithm until convergence. Experiments show that both contributions are successful in

practice.

x

Chapter 1

Background

1.1 Bayesian inference

Suppose we have a probabilistic model with observations x and hidden variables

z. We want to infer the hidden variables z that can best explain the observations x. In the

Bayesian framework, we treat parameters as hidden random variables as well.

Maximum Likelihood. The common way to perform inference is to compute the Maxi-

mum Likelihood estimate

ˆ

zML = argmax

z
p(x|z)

which is the set of hidden variables that maximizes the likelihood p(x|z) of the observed

data.

Maximum a posteriori. A Bayesian approach will assume some prior knowledge about

the hidden variables: a distribution p(z) over the space of hidden variables z. The likelihood

p(x|z) gets weighted by the prior knowledge p(z) to give the posterior p(z|x):

posterior / likelihood ⇥ prior or here p(z|x) / p(x|z) ⇥ p(z).

The maximum a posteriori (MAP) estimate

ˆ

zMAP = argmax

z
p(x|z)p(z) = argmax

z
p(z|x)

1

2

is the set of hidden variables that maximizes the posterior. The main advantage of this

approach is that in order to maximize p(z|x), we don’t need to compute the normalizing

constant

p(x) =

Z

z

p(x|z)p(z)dz

whereas it is needed for the full Bayesian approach, as we will see in the next paragraph.

This normalizer can become intractable when models get complicated. The MAP method is

therefore sometimes described as poor man’s Bayesian inference (Tzikas et al., 2008) as

this is a way of including prior knowledge without having to pay the expensive price of

computing p(x).

Full Bayesian approach. In the full Bayesian approach, we don’t only want one estimate

ˆ

z of the hidden variables, but the entire distribution over them, the posterior distribution

p(z|x).

Every time we pick one specific value for a parameter in a model, we are making

an approximation. As we compose models, approximations get amplified at every layer of

the model. Feeding the entire parameters distribution in the next layer, instead of a point

estimate, will increase the added value of this layer to the model.

In this approach, the normalizer p(x) becomes intractable as the model gets more

complex, making it impossible to compute the posterior distribution. Often, the best we can

do is approximate the posterior.

1.2 Approximation methods for Bayesian inference

There are two method families to approximate intractable posterior distributions:

deterministic methods such as variational inference, and stochastic methods such as sampling

methods.

Deterministic methods. Variational methods come from the mathematical field calculus

of variations where the goal is to find the function that optimizes a given numerical quantity.

3

One common variational method is Variational Expectation-Maximization (EM). Standard

EM is used to get Maximum Likelihood estimates

ˆ

z = argmax

z
p(x|z).

But when the model gets complicated, computing the posterior p(z|x) in the E step becomes

computationally intractable. Variational Bayes approximates the posterior by removing

some dependencies between some variables of the model to get a tractable distribution q(z)

over the space of hidden variables z. Variational EM approach approximates the posterior

by considering a parameterized family of tractable distributions (Bishop, 2006).

Stochastic methods. Gibbs sampling is a Markov Chain Monte Carlo algorithm (Geman

and Geman, 1984) that repeatedly picks one hidden variable zi at random and samples it

from the distribution of that variable conditioned on all other hidden variables z�i and the

observation x.

Algorithm 1 Gibbs sampling
Initialize z randomly

repeat

Pick i randomly

Draw zi ⇠ p(zi|z�i,x)

until convergence

We refer to convergence loosely here, as Gibbs sampling doesn’t converge and will

eventually visit all possible state, maybe in an exponential number of iterations. We’ll

usually assume convergence when the state is not changing too much over a reasonable

number of iterations.

1.3 Linear topic modeling

The interest in learning some kind of topics from a corpus of documents started from

the publication of Latent Semantic Analysis (LSA) (Deerwester et al., 1990), also called

Latent Semantic Indexing (LSI) in the context of information retrieval. LSA is a linear

4

method based on the factorization of the document-word matrix X , where xdw is the count

of occurrences of word w in document d. The goal is to find a low-rank approximation ˜

X

of X factorizing it into two matrices, one representing the documents, and the other the

topics. In this model, documents are converted to the bag-of-words format which ignores

the ordering of words and only keeps the word counts.

Singular Value Decomposition. The most common way is to use the Singular Value

Decomposition (SVD) of

X = U⌃V

T

where U and V are orthonormal matrices and ⌃ is diagonal. By selecting only the K

largest singular values from ⌃ and the corresponding vectors in U and V

T , we get the best

rank K approximation of matrix X according to the loss kX � ˜

Xk22. Rows of U represent

documents in a K-dimensional space, and columns of V T represents the topics in the same

space. Each document can be expressed as a linear combination of topics.

Non-negative Matrix Factorization. Another common approach is to use use Non-

negative Matrix Factorization (NMF) on the document-word matrix X (Lee and Seung,

1999; Pauca et al., 2004). Here, ˜

X = UV where U represents the topics and V the

documents, both being non-negative matrices.

1.4 Probabilistic topic modeling

LSA represents topics as points in Euclidean space and documents as linear com-

bination of topics. Probabilistic topic models differ from LSA by representing topics as

distributions over words, and documents as probabilistic mixtures of topics. Formally, given

a vocabulary of W words, each topic k = 1, ..., K has a word-distribution 'k 2 �W , with

�n the simplex of dimension n, and each document d = 1, ..., D has a topic-distribution

✓d 2 �K . Call � the matrix with rows 'k and ⇥ the matrix with rows ✓d. Table 1.1 gives

the list of symbols we will be using.

5

Table 1.1: Definition of symbols

Symbol Definition
�n ⇢ Rn Simplex of dimension n
W 2 N Number of words in the vocabulary
D 2 N Number of documents in the corpus
K 2 N Number of topics
Nd 2 N Number of words in document d
ndw 2 N Count of word w in document d
wdi 2 J1,W K Word at position i in document d
zdi 2 J1, KK Topic assignment of the word wdi

↵ 2 R+ Parameter of a symmetric Dirichlet prior over ✓d
� 2 R+ Parameter of a symmetric Dirichlet prior over 'k

 dw 2 �K Topic-distribution for word w in document d
'k 2 �W Word-distribution for topic k
✓d 2 �K Topic-distribution for document d
�k 2 RW Parameter of a Dirichlet prior over 'k in the variational setup
�d 2 RK Parameter of a Dirichlet prior over ✓d in the variational setup
� 2 RW⇥K Matrix of rows 'k

⇥ 2 RK⇥D Matrix of rows ✓d
� 2 RW⇥K Matrix of rows �k

 Digamma function

6

D

N

✓d zdi wdi

K

'k

Figure 1.1: pLSI model

By estimating the model parameters (�,⇥) of the model, we discover new knowl-

edge about the corpus; topics are represented by the word-distributions 'k, and each

document is tagged with discovered topics, which is represented by ✓d.

Probabilistic Latent Semantic Indexing (pLSI) is described as a generative process

(Hofmann, 1999), a procedure that probabilistically generates documents given the param-

eters of the model (Algorithm 2). Parameters of the model are then learned by Bayesian

inference.

Algorithm 2 Generative process for pLSI
procedure GENERATIVEPLSI(document-tagging ✓d, topics 'k)

for document d = 1, ..., D do

for position i = 1, ..., Nd in document d do

Draw a topic zdi ⇠ Discrete(✓d)

Draw a word wdi ⇠ Discrete('zdi
)

return counts ndw =

P
i I(wdi = w)

Although the formulation of the model is probabilistic, Ding et al. (2008) proved

the equivalence between pLSI and NMF, by showing that they both optimize the same

objective function. As they are different algorithms, they will navigate in the parameters

space differently. It is possible to design an hybrid algorithm alternating between NMF and

pLSI, every time jumping out of the local optimum of the other method.

7

1.5 Latent Dirichlet Allocation

Blei et al. (2003) extended pLSI by adding a symmetric Dirichlet prior Dir(↵) on

topic-distributions ✓d of documents and derived a variational EM algorithm for the Bayesian

inference. Griffiths and Steyvers (2002a,b) went further by adding1 a symmetric Dirichlet

prior Dir(�) on topics 'k, and derived a Gibbs sampler for the Bayesian inference. The

generative process of LDA is described in Algorithm 3.

Algorithm 3 Generative process for LDA
procedure GENERATIVELDA(document-tagging smoothing ↵, topic smoothing �)

for topic k = 1, ..., K do

Draw a word-distribution 'k ⇠ Dir(�)

for document d = 1, ..., D do

Draw a topic-distribution ✓d ⇠ Dir(↵)

for position i = 1, ..., Nd in document d do

Draw a topic zdi ⇠ Discrete(✓d)

Draw a word wdi ⇠ Discrete('zdi
)

return counts ndw =

P
i I(wdi = w)

Bayesian model can also be described graphically in plate notation which helps to

understand the dependencies between random variables. The graphical representation of

LDA is presented in Figure 1.2.

We suppose documents are generated according to this generative model and we want

to estimate values for a set a parameters (�,⇥) that can best explain the set of observations:

the word counts ndi.

Theoretically, we could learn hyperparameters ↵ and � using Newton-Raphson

method (Blei et al., 2003). But usually, hyperparameters are fixed heuristically to simplify

the algorithm and make it converge faster. Common values are ↵ =

1
K

and � = 0.1 (Steyvers

1Chronologically, Blei et al. (2002) first published a paper presenting LDA in NIPS treating topics 'k as
free parameters. Shortly after, Griffiths and Steyvers (2002a,b) extended this model by adding a symmetric
Dirichlet prior on 'k. Finally, Blei et al. (2003) published an extended version their first paper in Journal
of Machine Learning Research (by far the most cited LDA paper) with a section on having this Dirichlet
smoothing on multinomial parameters 'k.

8

D

N

↵
✓d zdi wdi

K

�

'k

Figure 1.2: LDA model

and Griffiths, 2006).

Chapter 2

Evaluating topic models

Despite the intensive work on topic models during the last decade, we still don’t

have any convincing way of evaluating their goodness of fit and this is still an open research

question (Blei, 2012).

Our work deals with improving the topics found by LDA, either by changing their

representation (Chapter 3), or by allowing the user to give live guidance to the inference

algorithm (Chapter 4). In order to measure these improvements, we need to be able to

evaluate a given output of LDA. This chapter presents the state-of-the-art in terms of

automatic ways of measuring topic usefulness.

2.1 Perplexity

The most common way to evaluate a probabilistic model is to measure the log-

likelihood of a held-out test set. This is usually done by splitting the dataset into two

parts: one for training, the other for testing. For LDA, a test set is a collection of unseen

documents wd, and the model is described by the topic matrix � and the hyperparameter ↵

for topic-distribution of documents. The LDA parameters ⇥ is not taken into consideration

as it represents the topic-distributions for the documents of the training set, and can therefore

be ignored to compute the likelihood of unseen documents. Therefore, we need to evaluate

9

10

the log-likelihood

L(w) = log p(w|�,↵) =
X

d

log p(wd|�,↵).

of a set of unseen documents wd given the topics � and the hyperparameter ↵ for topic-

distribution ✓d of documents. Likelihood of unseen documents can be used to compare

models; higher likelihood implying a better model.

The measure traditionally used for topic models is the perplexity of held-out docu-

ments wd defined as

perplexity(test set w) = exp

⇢
� L(w)

tokens

�

which is a decreasing function of the log-likelihood L(w) of the unseen documents wd; the

lower the perplexity, the better the model.

However, the likelihood p(wd|�,↵) of one document is intractable, which makes

the evaluation of L(w), and therefore the perplexity, intractable as well. Wallach et al.

(2009) derive various sampling methods to approximate this probability.

2.2 Perplexity is not strongly correlated to human judg-

ment

Chang et al. (2009) have shown that, surprisingly, predictive likelihood (or equiva-

lently, perplexity) and human judgment are often not correlated, and even sometimes slightly

anti-correlated.

They ran a large scale experiment on the Amazon Mechanical Turk platform. For

each topic, they took the top five words (ordered by frequency p(w|k) = 'kw) of that topic

and added a random sixth word. Then, they presented these lists of six words to participants

asking them to identify the intruder word.

If every participant could identify the intruder, then we could conclude that the topic

is good at describing an idea. If on the other hand, many people identified one of the topic

top five word as the intruder, it means that they could not see the logic in the association of

words, and we can conclude the topic was not good enough.

11

It’s important to understand what this experiment is proving. The result proves that,

given a topic, the five words that have the largest frequency p(w|k) = 'kw withing their

topic are usually not good at describing one coherent idea; at least not good enough to be

able to recognize an intruder.

2.3 Modeling human judgment

Human judgment not being correlated to perplexity (or likelihood of unseen docu-

ments) is the motivation for more work trying to model the human judgment. This is by

itself a hard task as human judgment is not clearly defined; for example, two experts can

disagree on the usefulness of a topic.

One can classify the methods addressing this problem into two categories. Intrinsic

methods that do not use any external source or task from the dataset, whereas extrinsic

methods use the discovered topics for external tasks, such as information retrieval (Wei and

Croft, 2006), or use external statistics to evaluate topics.

As an early intrinsic method, AlSumait et al. (2009) define measures based on

three prototypes of junk and insignificant topics. The three prototypes for junk topics are

the uniform word-distribution, the empirical corpus word-distribution, and the uniform

document-distribution:

p(w|topic) / 1 p(w|topic) / count(w in corpus) p(d|topic) / 1

Then a topic significance score is computed from various dissimilarities and similarities (KL

divergence, cosine, and correlation) to these three prototypes. However, the significance

score is a complicated function with free parameters, that seem to be arbitrarily chosen, so

the risk of overfitting the two datasets used for experiments is high.

2.3.1 Topic coherence

The state-of-the-art in terms of topic coherence are the intrinsic measure UMass and

the extrinsic measure UCI, both based on the same high level idea. Both measure compute

12

the sum

Coherence =

X

i<j

score(wi, wj)

of pairwise scores on the words w1, ..., wn used to describe the topic, usually the top n

words by frequency p(w|k). This measure can be seen as the sum of all edges on the graph

shown in Figure 2.1.

Notation. Let’s define D(wi) as the count of documents containing the word wi, D(wi, wj)

the count of documents containing both words wi and wj , and D the total number or

documents in the corpus. The corpus used to compute the counts is specified in a subscript

of symbol D. For example, DWikipedia(wi) it the count of documents of the Wikipedia corpus

containing the word wi. When no subscript is specified, the corpus used is the corpus on

which the model have been trained.

2.3.2 Extrinsic UCI measure

The UCI measure introduced by Newman et al. (2010) uses as pairwise score function

the Pointwise Mutual Information (PMI)

scoreUCI(wi, wj) = log

p(wi, wj)

p(wi)p(wj)

where p(w) represents the probability of seeing wi in a random document, and p(wi, wj) the

probability of seeing both wi and wj co-occurring in a random document. Those probabilities

are empirically estimated from an external dataset such as Wikipedia:

p(wi) =
DWikipedia(wi)

DWikipedia
and p(wi, wj) =

DWikipedia(wi, wj)

DWikipedia
.

Given the score function, we are free to choose the corpus to compute the empirical

probabilities. Newman et al. (2010) chose three external corpus to evaluate them (Wikipedia,

Google 2-grams, and Medline) but not the corpus that generated the topics. The argument

given is that using the same dataset would reinforce noise or unusual word statistics. How-

ever, some intrinsic topic coherence measures have been developed since, that are also better

correlated to human judgment than perplexity (Mimno et al., 2011) (see next section). It

may be worth comparing intrinsic and extrinsic PMI-based measures.

13

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

Figure 2.1: Both topic coherence measures UCI and UMass are based on the sum
P

i<j score(wi, wj) of the pairwise scores of the n top words w1, ..., wn of the topic.

2.3.3 Intrinsic UMass measure

The UMass measure introduced by Mimno et al. (2011) uses as pairwise score

function

scoreUMass(wi, wj) = log

D(wi, wj) + 1

D(wi)

which is the empirical conditional log-probability log p(wj|wi) = log

p(wi,wj)
p(wj)

smoothed by

adding one to D(wi, wj).

The score function is not symmetric as it is an increasing function of the empirical

probability p(wj|wi), where wi is more common than wj , words being ordered by decreasing

frequency p(w|k). So this score measures how much, within the words used to describe a

topic, a common word is in average a good predictor for a less common word.

As the pairwise score used by the UMass measure is not symmetric, the order of the

arguments matters. UMass measure is computing p(rare word | common word), how much

a common word triggers a rarer word. However, in human word association, high frequency

words are more likely to be used as response words than low frequency words (Steyvers

and Griffiths, 2006). It would be interesting to understand the effect of this choice by doing

more experiments and comparing the two options.

14

2.4 On smoothing in topic coherence measures

Stevens et al. (2012) performed an extensive study of the these two measures on one

dataset (New York Times articles1) in order to compare the three models: LDA, LSA with

SVD, and LSA with NMF. However, they did not use the formulations of the measures used

by their original authors.

For the UMass measure, they introduced a free parameter ", instead of just one, for

smoothing in the pairwise scoring function

scoreUMass(wi, wj) = log

D(wi, wj) + "

D(wi)

and tried both " = 1 and " = 10

�12. Setting " = 10

�12 seems to over-penalize pairs that

never occur together, i.e. when D(wi, wj) = 0, as it will decrease the score of that pair by

12

scoreUMass(wi, wj) = log

"

D(wi)
= �12� logD(wi)

which is very large in the log space of document counts. It is also equivalent to say that we

would have to see 10

12 more documents to see the two words appearing only once together.

Having " = 1 looks more reasonable as it is treating pairs that appear once throughout the

corpus, i.e. when D(wi, wj) = 1, and pairs that never appear, i.e. when D(wi, wj) = 0,

roughly in the same order of magnitude.

For the UCI measure, they introduced a smoothing " in the pairwise score that the

original authors did not

scoreUCI(wi, wj) = log

p(wi, wj) + "

p(wi)p(wj)

with " initially set to one. Here, we are at a different scale as we are dealing with probabilities

and not counts. As " = 1 is likely to be huge compared to p(wi, wj), the smoothing parameter

artificially increases the topic coherence, and not even by the same amount for all pairs

of words. Then, using " = 10

�12, which is likely to be smaller than p(wi, wj), caused big

changes, and therefore the authors concluded that coherence measures depend heavily on

smoothing ".
192,600 New York Times articles from 2003 and a vocabulary size of 35,836 tokens after removing the

ones occurring less than 200 times throughout the corpus.

15

Nonetheless a smoothing parameter is required to avoid taking the logarithm of zero.

A reasonable choice for smoothing is to assume that every pair of words is present at least

once in the corpus, and compute the empirical probability

p(wi, wj) =
DWikipedia(wi, wj) + 1

DWikipedia

which is the same smoothing as the UMass measure.

Chapter 3

Word relevance within a topic

The most common way to display a topic, a discrete distribution over words, is to

print out the top ten words ordered by decreasing frequency within this topic. Given a single

topic, there is nothing much more we can do. But knowing other topics that are describing

the same corpus gives us more information. It seems we can use this information to pick

better words to represent topics.

Chapter 2 presents the state-of-the-art in evaluation of topic coherence. Both pre-

sented metrics are the sum of pairwise score on the ten top words. In this chapter we

present a novel way to pick words to represent topics. We illustrate it by examples of this

new representation, and compare the change in topic coherence from the old to the new

representation with the measures presented in the previous chapter.

3.1 Word distinctiveness and saliency

In order to find the best informative words of a corpus, Chuang et al. (2012) first

define word distinctiveness

D(w) =
X

k

p (k|w) log p(k|w)
p(k)

= KL
�
p(k|w) k p(k)

�

of a word as the Kullback–Leibler (KL) divergence between, the topic distribution p(k|w)
given the word w, and the marginal topic distribution p(k), the likelihood that any random

16

17

word has been drawn from topic k. The word distinctiveness measures how much a word

is shared across topics. The higher the distinctiveness, the less this word is shared across

topics.

Then, they define the word saliency

S(w) = p(w)D(w)

of a word w by weighting its frequency by its distinctiveness. Compared to the ranking

by frequency p(w), the ranking by saliency p(w)D(w) will penalize the words shared

across several topics, as they will have a low distinctiveness, and boost words that are good

predictors of one topic, as they will have a high distinctiveness.

3.2 Word relevance for a topic

Word saliency and distinctiveness have been design to find relevant words corpus-

wide, not for a specific topic. They are not good to find candidates for topic representatives.

In this section, we present a word relevance score within a topic based on the same idea:

penalize the word frequency by a factor that captures how much the word is shared across

topics.

First, instead of the global word frequency p(w), we consider the frequency p(w|k)
of the word within a topic k. Then as a sharing penalty, we divide by the exponential entropy

eHw , where

Hw , �
X

k

p(k|w) log p(k|w)

is the entropy of the distribution of topics given a word w, capturing how much the word w

is shared across several topics. We define the relevance measure

R(w|k) , p(w|k)
eHw

for word w within topic k as being the frequency divided by the exponential entropy.

Interpretation of exponential entropy eH . The exponential entropy can be seen as a

measure of the extent, or the spread, of a distribution (Campbell, 1966). By extent, we mean

18

the size of the support, or the number of elements with non-zero probability. Figure 3.1

illustrates it on three examples.

1 2 3 ... K topics

'kw

1

(a) Delta distribution

H = 0, and eH = 1

1 2 3 ... K topics

'kw

0.6
0.4

(b) Example distribution

H = 0.67, and eH = 1.96

1 2 3 ... K topics

'kw

1

K

(c) Uniform distribution

H = logK, and eH = K

Figure 3.1: These figures illustrate how the exponential entropy eH measures the extent of

a distribution. Distribution (a) has only one word as support, and eH = 1. Distribution (b) is

spanning only two words, but not uniformly so its exponential entropy is slightly below two.

Distribution (c) is spanning uniformly K words, and eH = K.

3.3 Computation of word relevance measure

Let’s see how to express relevance R(w|k) in terms of LDA parameters. The

numerator is straightforward

R(w|k) , p(w|k)
eHw

=

'kw

eHw

Now, computing the entropy

Ew =

X

k

p(k|w) log p(k|w)

requires applying Bayes rule on p(k|w):

p(k|w) / p(w|k) p(k)

= 'kw

X

d

p(k|d)p(d)

/ 'kw

X

d

✓dkNd

where Nd is the length of document. Recombining the results, we get a procedure to compute

the relevance score:

19

(a) Compute topic-distribution given word w:

p(k|w) / 'kw

X

d

✓dkNd

(b) Compute its entropy:

Hw ,
X

k

p(k|w) log p(k|w)

(c) Divide the frequency of word w within topic k by the exponential entropy:

R(w|k) , p(w|k)
eHw

3.4 Top relevant word to describe topics

When running LDA on a corpus, some background words are going to be frequent

throughout the corpus, and therefore be found as top words by frequency p(w|k) of several

topics. Table 3.1 shows this situation on the [20news] corpus where most of the top words

are background words and don’t convey any meaning: people, writes, article, good, etc.

Those background words are shared across numerous topics, and their eHw will be high.

They will be penalized by e�Hw and score low on word relevance measure. On the other

hand, words scoring high on word relevance measure p(w|k)e�Hw are more descriptive, and

topics that did not make sense when described by top words by frequency p(w|k), become

intelligible when described by top words by relevance p(w|k)e�Hw .

20

Table 3.1: Three topics extracted from the output of LDA run on the corpus [20news]

with 30 topics. For each topic, we give the top words according to frequency p(w|k) and

relevance p(w|k)e�Hw .

Topic 1 Topic 2 Topic 3

Top
words by
frequency
p(w|k)

people
writes
article
guns
police
government
state

writes
space
article
power
radio
ground
problem

writes
article
good
cars
engine
bike
time

Top
words by
relevance
p(w|k)e�Hw

guns
firearms
weapons
firearm
handgun
crime
police

voltage
circuit
space
larson
wiring
circuits
wire

engine
cars
bike
tires
drive
miles
ford

This effect is even stronger for specialized corpora, such as [nips] or [nsf] that

contain research papers of one specific area. Table 3.2 shows six topics extracted from a run

of LDA on the [nips] corpus. Background words here are not general English words, like for

[20news], but words describing the field of the research papers: network, networks, neural,

and input. Each of these topics, taken alone by itself, will look intelligible by humans.

However, all presented next to each other, it becomes unclear what is the difference between

them. Being able to understand interactions between topics is important when topics are

used for an external task, such as browsing the corpus or information retrieval.

Showing the top words by relevance p(w|k)e�Hw will show what is specific about

each topic. Topic 1 is more about chips and circuits where topic 3 is specifically about

head direction cells, a special type of neurons involved in self-motion, and topic 4 about

controlled substances (drugs, precursors and plants).

21

Table 3.2: Six topics extracted from the output of LDA run on the highly specialized corpus

[nips] with 30 topics. For each topic, we give the top words by frequency p(w|k) and

relevance p(w|k)e�Hw .

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
Top words

sorted by
p(w|k)

network
input
output
neural
time

network
neural
training
networks
input

network
input
model
system
neural

network
neural
control
model
system

network
networks
neural
neurons
dynamics

network
neural
networks
algorithm
time

Relevant
words

sorted by
R(w|k)

chip
analog
network
circuit
voltage

characters
character
network
printed
classifier

head
cells
motor
network
vestibular

controller
precursor
plant
parse
control

dynamics
neurons
bifurcation
neuron
network

dataflow
network
neural
networks
boolean

3.5 Coherence of topics described by top words by rele-

vance

We have seen in the previous section a couple of examples where indeed showing

words scoring higher on relevance are better candidates to describe topics than top words

by frequency. Now, there are some automated measures of topic coherence, and we have

presented the state-of-the-art in Chapter 2; it consists of the intrinsic measure UMass based

on the conditional probability of one word given another, and the extrinsic measure UCI

based on the the Pointwise Mutual Information (PMI) of words, computed from an external

corpus such as Wikipedia. In this section, we compare the change in topic coherence

according to these two metrics when changing the topic representation from top words by

frequency to top words by relevance.

Wikipedia as the external corpus. To compute the UCI measure topic coherence score,

we chose Wikipedia as external corpus as it is large enough so that every pairs of common

enough words will appear in at least one document. Wikipedia was also the external corpus

showing best correlation between UCI coherence score and human judgment (Newman

22

et al., 2010). To compute the document counts DWikipedia(wi, wj) and DWikipedia(wi) needed

for the topic coherence, we indexed the entire Wikipedia database into an instance of Apache

Solr, an open-source search engine. Then querying words or pairs of words and reading

the number of documents matching the query allowed us to get in constant-time1 the few

statistics needed to compute the topics coherence.

UCI topic coherence measure. For each of the four corpora [ap], [20news], [nips], and

[nsf] we ran LDA with 30 topics. For each topic k, we isolated two sets of words: top ten

words S(freq)
k in frequency p(w|k), and top ten S(rel)

k words in relevance p(w|k)e�Hw . We

then compute improvement factor

⇢k =
CoherenceUCI

⇣
S(rel)
k

⌘

CoherenceUCI

⇣
S(freq)
k

⌘

in topic coherence from top words in frequency to top words in relevance. A factor ⇢k
greater than one means that the top words in relevance are more coherent than the top words

in frequency, according to the UCI metric. Histograms in Figure 3.2 shows the distribution

of ⇢k for the four datasets. We can see that choosing top words based on relevance over top

words based on frequency almost always increase the topic coherence.

0 0.5 1 1.5 2 1
0

7

12

9

2
⇢k

count of topics

(a) Dataset [ap]

0 0.5 1 1.5 2 1
0 1

12

7

10

⇢k

count of topics

(b) Dataset [20news]

0 0.5 1 1.5 2 1
0 1

19

9

1 ⇢k

count of topics

(c) Dataset [nips]

0 0.5 1 1.5 2 1
0 0

12
14

4

⇢k

count of topics

(d) Dataset [nsf]

Figure 3.2: Distribution over 30 topics of the improvement factor ⇢k of topic UCI coherence

from top words by frequency to top words by relevance for four datasets. Green bars indicate

ranges where topic coherence is increased (⇢k > 1).

1The time Solr takes to return the count may depend on the size of the index, and therefore the number of
documents. For us, it was 3ms per request, small enough to consider it as constant-time.

23

UMass topic coherence measure. However, conducting the same experiment with the

UMass measure does not give similar results. Changes in topic coherence becomes less

predictable. Histograms in Figure 3.3 shows the distribution of the improvement factor

according to this measure for the four datasets.

0 0.5 1 1.5 2 1
0

11 12

2

5

⇢k

count of topics

(a) Dataset [ap]

0 0.5 1 1.5 2 1
0

20

7

2 1 ⇢k

count of topics

(b) Dataset [20news]

0 0.5 1 1.5 2 1

11

14

4

1 0 ⇢k

count of topics

(c) Dataset [nips]

0 0.5 1 1.5 2 1

14

17

9

0 0 ⇢k

count of topics

(d) Dataset [nsf]

Figure 3.3: Distribution over 30 topics of the improvement factor ⇢k of topic UMass

coherence from top words by frequency to top words by relevance for four datasets. Green

bars are for ⇢k > 1.

Varying the number of topics. Let’s now try to understand what is the cause of improve-

ment in UCI measure. As sometimes, good results are due to the small number of topics

used, we reconducted the same experiment with 100 topics instead of 30. Figure 3.4 presents

results almost as good as for the first case.

24

0 0.5 1 1.5 2 1
0

4

31
39

26

⇢k

count of topics

(a) Dataset [ap]

0 0.5 1 1.5 2 1
3 5

30 30 32

⇢k

count of topics

(b) Dataset [20news]

0 0.5 1 1.5 2 1
1

18

45

24

12

⇢k

count of topics

(c) Dataset [nips]

0 0.5 1 1.5 2 1
0

5

64

22

9
⇢k

count of topics

(d) Dataset [nsf]

Figure 3.4: Distribution over 100 topics of the improvement factor ⇢k of topic UCI coher-

ence from top words by frequency to top words by relevance for four datasets. Green bars

are for ⇢k > 1.

Intrinsic PMI. For our last experiment, we consider an intrinsic version of the UCI

measure. Instead of using Wikipedia as an external dataset, we used the same corpus on

which LDA has been run to generate the word co-occurrence statistics. Figure 3.5 presents

the results; computing the coherence score with this new intrinsic PMI-based measure, we a

systematic improvement in topic coherence by choosing top words by relevance.

0 0.5 1 1.5 2 1
0 0

17

11

2 ⇢k

count of topics

(a) Dataset [ap]

0 0.5 1 1.5 2 1
0 0

26

4
0 ⇢k

count of topics

(b) Dataset [20news]

0 0.5 1 1.5 2 1
0 0

28

2
0 ⇢k

count of topics

(c) Dataset [nips]

0 0.5 1 1.5 2 1
0 0

30

0 0 ⇢k

count of topics

(d) Dataset [nsf]

Figure 3.5: Distribution over 100 topics of the improvement factor ⇢k of topic coherence

according to the intrinsic PMI-based coherence measure. Green bars are for ⇢k > 1.

The conclusion we can draw from these experiments is that we can almost systemat-

25

ically increase the average (intrinsic or extrinsic) PMI score
X

i<j

PMI(wi, wj) with PMI(wi, wj) = log

p(wi, wj)

p(wi)p(wj)

of the ten top words w1, ..., w10 by choosing them by frequency to relevance.

3.6 Using PMI for topic relevance

Given the conclusion of the previous section, one can ask if it is always good thing

to increase the PMI score. Indeed, the major issue with PMI is that it over-estimates low-

frequency events. Therefore, a high PMI may not mean a high word correlation, but maybe

just low-frequency words.

Example. For instance, the PMI is maximal when wi and wj always occur together:

D(wi) = D(wj) = D(wi, wj) = n

where n is the count of documents where their occur. Then their PMI will be

PMI(wi, wj) = log

n
D

n
D
· n
D

= logD � log n

where D is the total number of documents. So for the same high predictive power of one

word given the other, if they are present in all documents, their PMI will be zero, but it will

be logD if they are appear in only one document.

Alternatives. Some alternatives have been developed to go around this issue. One is to

use variants of the PMI such as the Weighted PMI (Schneider, 2005):

p(wi, wj) log
p(wi, wj)

p(wi)p(wj)

or giving more weight to the joint probability:

log

p(wi, wj)
2

p(wi)p(wj)
or log

p(wi, wj)
3

p(wi)p(wj)

But the most common common alternative is to heuristically choose a threshold on frequen-

cies and don’t consider low-frequency events (Pantel and Lin, 2002).

26

PMI for top words. In our case, we are actually not computing the PMI for every pairs of

words but just for the top ten words, either according to frequency or topic relevance. This

is close to setting a threshold on frequency: we are only considering frequent words. This

argument is true also for word relevance, even if we penalize some high-frequency words

(the background words), a word scoring high on relevance p(w|k)e�Hw will have a high

frequency p(w|k) as well.

So by working only with high-frequency words, high PMI is more likely to mean

high correlation rather than rarer events.

3.7 Conclusion

We introduce the word relevance, a novel measure R(w|k) , p(w|k)e�Hw to order

words within a topic, and therefore to represent the topic, by penalizing words that are shared

in multiple topics. We found out that the top words by relevance are better representative for

a topic, and confirmed that the average PMI is a good way of measuring topic coherence.

Chapter 4

Interactive LDA

This chapter introduces a novel interactive method for topic modeling, allowing the

user to give guidance towards better topics. Work in the previous topic on words relevance

within a topic is used to provide the user with better representations of topics, allowing him

to give better guidance in the parameter search.

Running LDA in an interactive way allows the inference algorithm to use user

feedback to direct the parameter search. The function that LDA is optimizing has multiple

local optimum, and inference algorithms known most likely will not find the global optimum,

but only a local one. Live user feedback is repeatedly used to kick the algorithm out of its

local minimum, until it converges again to another one which may be better from the user

perspective.

4.1 Previous work

The only approach that has been explored is to enforce pairwise word constraints in

the prior over topics 'k and re-run the algorithm after each user input.

27

28

Pairwise word constraints

Andrzejewski et al. (2009) replace the symmetric Dir(�) prior by a new one over

topics to enforce some word constraints based on external sources: co-occurrences statistics,

expert input, etc. It is only at the end of their work that they add a section on how to use this

framework for interactive topic modeling: the external source is the live user instruction.

Standard LDA is first run, discovering a latent topics for the corpus using Gibbs sampling.

Then the four following steps are repeated until the user is satisfied with the topics:

1. The user gives feedback on the topics in three different forms: “those words must be

in the same topic”, “those words must not be in the same topic”, and “those words

should be isolated in one topic”.

2. Each of these three feedback is encoded into two kinds of pairwise constraints:

Must-Link(w1, w2) meaning that words w1 and w2 must be in the same topic, and

Cannot-Link(w1, w2) meaning that they cannot be in the same topic.

3. A complex prior over words, based on Dirichlet Forests, is constructed to enforce

those Must-Link and Cannot-Link constraints.

4. Gibbs sampling is started over using this new prior instead of the symmetric Dir(�).

A more efficient approach

This method requires to re-run Gibbs sampling from the beginning after each user

instructions. Hu et al. (2011) extended this approach proposing Interactive Topic Modeling

(ITM) where the Gibbs sampler is not restarted after each user action. Instead, the prior

is updated in-place to incorporate the new constraints and the internal state of the Gibbs

sampler is changed. This new state is then used as starting position for a new Markov chain.

The collapsed Gibbs sampler maintains the topic assignment zdi of each word wdi,

along with some counts. Updating the internal state is done by state ablation; invalidate some

topic-word assignments by setting z = �1. Because we are removing some word-topic

assignments, the counts maintained by the Gibbs sampler are decremented accordingly:

29

count of words assigned to topic k in document d, and count of times word w is assigned to

topic k in corpus.

They explore several strategies of invalidation: invalidate all assignments, only of

documents that have any of the terms constraints, only of the terms concerned, or none.

After each user actions, the Gibbs sample runs for 30 more iterations before asking for user

feedback again.

Experiments were conducted using Amazon Mechanical Turk, having users provid-

ing the instructions on words. They used the dataset [20news], built a classifier on top of

the final topic model, and measured one topic model performance in terms of classification

error rate. However, given a corpus of documents, there can be several different coherent

but orthogonal classifications that experts can agree on. The dataset might be organized

according to one, and the algorithm discovering another, yet having a high classification

error rate compared to the first one.

The results are not convincing; they only used one dataset, and the median user had

an error reduction indistinguishable from zero.

The authors currently are preparing an extended version of the paper to be published

in 2013 presenting a complete system for interactive topic modeling, with a web-based user

interface.

A novel method

In this chapter, we present a novel method for interactive topic modeling. Even

though LDA is often introduced along with its Gibbs sampling inference algorithm because

of its simplicity, our method is based on the other common inference approach for LDA,

Variational Expectation-Maximization (EM) inference.

Our method allows us to be more expressive in terms of user feedback, where

the previously described framework only allows pairwise Must-Link and Cannot-Link

constraints. We can, for instance, specify that one topic is bad without wanting to enforce

anything specific about the words used to describe that topic. The algorithm will redistribute

them to other topics automatically.

30

D

N
↵

✓d zdi wdi

K

�

'k

(a) LDA model

D

N

�d ✓d di zdi wdi

K

�k

'k

(b) Variational approximation

Figure 4.1: Plate notation illustrating the changes made to approximate the posterior by

Variational EM.

In our method, we don’t build a complicated prior over words to enforce constraints.

The resulting derivations are less complicated and intuitive.

4.2 Variational Expectation-Maximization

The goal of LDA inference is to compute the posterior p(�,⇥|w) over the latent

parameters ⇥ and � given the documents w. This posterior distribution being computation-

ally intractable, Variational EM approximates it using a tractable family of distributions. It

is done be removing some dependencies between parameters.

Instead of having all topics 'k share the same prior Dir(�), we have one different

prior Dir(�k) for each topic k. We follow the same idea for documents: instead of having

all documents sharing the same prior Dir(↵), we have a different prior Dir(�d) for each

document d

8k, 'k ⇠ Dir(�k) 8d, ✓d ⇠ Dir(�d)

as illustrated in plate notation in Figure 4.1.

The variational EM algorithm for LDA is described in Algorithm 4 (Blei et al., 2003).

First topics are initialized randomly, then EM epochs are repeated until convergence.

31

Algorithm 4 Variational EM for LDA
function VARIATIONALEM

Initialize � randomly

repeat

call EMEPOCH(�)

until convergence

In the Variational EM setup, we don’t compute the topics 'k and the document

tagging ✓d directly, instead we compute their distribution, namely the parameter �k of the

Dirichlet prior over the topics 'k, and the parameter �d of the Dirichlet prior over the

document tagging ✓d. Usually, we desire a value for the parameters 'k ⇠ Dir(�k) and

✓d ⇠ Dir(�d), therefore return the expected values

E['k] =
�kP
w �kw

and E[✓d] =
�dP
k �dk

which is just the normalized Dirichlet parameter. Because �k is very close to 'k that we are

going to output, we will be referring at �k as “the topic k”.

The EM epoch procedure is presented in Algorithm 5. In the E step, documents are

tagged with topics, keeping the topic �k fixed. The tagging is done by fitting the topics to

the documents, computing for each word wdi a discrete distribution di 2 �K over the K

topics. In the M step, topics �k are updated according to the assignments dwk made in the

E step.

Algorithm 5 One Variational EM epoch
function EMEPOCH(�)

for d = 1 to D do . E step

Initialize �dk = 1

repeat

Set dwk / expE[log ✓dk|�d]⇥ expE[log'kw|�k]

Set �dk = ↵ +

P
w dwkndw

until 1
K

P
k |change in �dk| < 0.00001

Set �kw = � +

P
d ndw dwk . M step

Quentin Pleplé

32

Note that there are no assumptions on the topics � at the beginning of an EM epoch.

Even though it may delay the convergence, changing � after the M step keeps the algorithm

correct. We use that property to update the topics on input feedback in between epochs.

Note as well that document taggings �d are recomputed at each epoch, and only � is

kept between epochs. This motivates to work only on �.

4.3 Interpretation of Dirichlet parameters �

The parameters of a Dirichlet distribution have also an intuitive interpretation. Each

component k represents the count of observations for event k. Therefore, �kw can be

interpreted as the number of times word w was assigned to topic k throughout the corpus.

From the M step of the Algorithm 5, the sum of each column of � without smoothing

� is equal to the total number of occurrences C(w) , P
d ndw of word w in the corpus:

X

k

(�kw � �) =
X

k

X

d

ndw dwk = C(w)

This gives us an interpretation of the Variational EM algorithm. It is splitting up the total

count of occurrences C(w) of each word w into the K topics, and adds smoothing � to get

topics �. Then each row of � is normalized to get outputted topic 'k.

Let’s see an example in order to understand this intuition. Let’s suppose our corpus

is only made of the two following documents: “Pixel cafe” and “The pixel cafe is a weekly

seminar”. After removing the stop words, our vocabulary is composed of the four words:

“pixel”, “cafe”, “weekly” and “seminar”.

� =

 �1

 �2

pixe
l

� + 1.8

� + 0.2

caf
e

� + 2

� + 0

week
ly

� + 0

� + 1

sem
inar

� + 0.1

� + 0.9

This matrix shows what the Variational EM algorithm could have discovered in this

corpus of two documents with K = 2 topics. Words “pixel” and “cafe” occur twice in the

33

corpus, and words “weekly” and “seminar” occur only once. These counts can be found

in � by summing each columns without the smoothing. Note that counts don’t have to be

integers.

Moreover, smoothing parameter � is often set to 1
K

. So adding � to every element of

column w is equivalent of having one extra occurrence of word w split equally across all K

topics.

4.4 Types of user feedback

We can implement all sorts of actions on the topic matrix �. In this work, we

restricted ourselves to four types of feedback. Each of the following feedback has a

dedicated section describing it in details.

“These words do not belong to this topic.” A natural feedback a user can give about a

topic is that some of the words presented do not belong to it. Chang et al. (2009) measured

quality of topics by asking user to find a random word they intruded into the topic’s top

words. We will respond to this feedback by resetting the count of these words in topic k,

which will have the effect of removing them from topic k, and assigning them to some other

topics.

“This topic does not make any sense.” When there is really no logic tying some words

together in the topic, we will simply remove the corresponding row in �, which will have

the effect of removing the topic. Words from that topics will naturally be assigned to the

closest other topic in the next EM epoch.

“These two topics are duplicates.” When two topics are so similar that one cannot

differentiate one from another, we merge the two topics by simply adding the counts of the

two topics. This will have the effect of having one topic as heavy as both previous combined

and describing the two.

34

“This topic is a mixture of two different topics.” When the user can see in the same

topic two groups of words, each tied by a different logic, we create a new row in the matrix

and split the word counts between the original row and the new one, according to the two

groups of words the user gave. This will have the effect of splitting the topic into two

different topics.

4.5 Removing words from topics

We remove word w from topic k just by resetting its count in the topic �k (Algo-

rithm 6). Note that we keep the smoothing parameter � to prevent taking the logarithm of

zero in the E step.

Algorithm 6 Word removing from topics
function REMOVE(word w, topic k)

Set �kw = �

Let’s now try to understand the effect of that update on the algorithm. Variational

topic assignment dwk of each word w in each document d is done in the E step:

 dwk / expE[log ✓dk|�d]⇥ expE[log'kw|�k].

Note that this is different from the topic assignment zdi. Assignment zdi 2 J1, KK holds the

topic that generated the word at position i in document d, whatever this word is. On the

other hand, dw 2 �K describes the distribution over the K topics of every word w of the

vocabulary for document d, whether this word is observed in d or not.

The expression in the update rule for dwk is an increasing function in �kw and �dk.

It means that the higher �kw, i.e. the more occurrences of word w were assigned to topic

k, the more topic k is going to have responsibility in observing the word w in d. Also, the

higher �dk, i.e. the more words from document d were assigned to topic k, the more topic k

is going to have responsibility in observing the word w in d. Table 4.1 presents these two

factors pushing a word into a topic, the first concerning topic-word bonds, and the second

document-topic bonds.

35

Table 4.1: Factors controlling topic assignment dwk of word w in document d

Factor Controlled by
Topic-word bonds
How much word w is already
part of topic k

Pseudocount �kw
How many occurrences of word w were
assigned to topic k

Document-topic bonds
How much topic k is present
in document d

Pseudocount �dk
How many words of documents d were
assigned to topic k

Resetting pseudocount �kw to � will kill the topic-word factor, but the word may

still return to the topic if the other factor is strong: if the word is part of documents that

have a high proportion of topic k (�dk big), then it might return back to this topic (�kw might

increase).

As we reset a value in the column w of �, the column without smoothing does not

add up to the number total number C(w) of occurrences of w anymore:
X

k

(�kw � �) < C(w)

This property not holding is not a problem, as it was not a constraint, but a consequence of

the update rules. We simply lose the deleted occurrences from our prior belief. At the end

of the next EM epoch, all occurrence of w will be assigned to topics and this property will

be restored.

Experiments

Table 4.2 shows the top words ranked by relevance of a topic about cryptography.

Suppose the user gives the feedback that words israel and lebanese do not belong to that

topic, so we call the removing procedure on those two words, then we run EM epochs until

convergence. The second columns shows the new top words after the operation. The words

that took the place of the removed words are phones and crypto that belong well to the

cryptography topic. On this example, removing two words from a topic produced a more

coherent topic. Note that this this experiment and all following, words presented to describe

a topic are top words by relevance p(w|k)e�Hw .

36

Table 4.2: Top words of one topic discovered by running LDA on corpus [20news] with

30 topics, before and after removing words israel and lebanese, and running LDA until

convergence.

Before After
clipper
escrow
encryption
chip
keys
sternlight
encrypted
israel
lebanese
wiretap

clipper
escrow
encryption
chip
keys
sternlight
encrypted
wiretap
phones
crypto

But we have seen that when the document-topic bonds are strong, words may come

back into the topic. To get a sense of how much this could be a problem, we made the

following experiment. First, we ran LDA until convergence, discovering 30 topics. Then, for

each of the top ten words of each topic, we tried to remove it, run LDA until convergence,

and compute how much the word came back to the topic it was deleted from by computing

the following come-back ratio:

ratio =

count(occurrences of w assigned to topic k before)
count(occurrences of w assigned to topic k after)

=

�(before)
kw � �
�(after)
kw � �

.

Figure 4.2 shows the distribution of this ratio over the 300 words (10 words times 30 topics).

The are two clear categories of words: those that don’t come back at all in the topic (73%),

in green, and those that come back completely, in red, having a ration close to one, and even

larger sometimes.

37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1

218

1 1 2 2 6 1 7 14
26 22

0 ratio

number of topics

Figure 4.2: Distribution of the fraction of the count of the deleted word that comes back to

the topic after removal.

To inquire what was making a word to come back or not to a topic after being deleted,

we looked at the number of documents containing each words. Figure 4.3 presents the

distribution of the number of document that contains the deleted word for the two groups:

words that did not come back to the topic (ratio lower than 0.5, in green), and words that did

come back (ratio greater than 0.5, in red). We can see that words that come back to the topic

they were deleted from, are the ones that are present in very few documents (maximum

four). Because each of these words w was a strong indicator of the topic k it was deleted

from, we know those very few documents are strongly tied to topic k, which makes �dk high

enough to increase back �kw.

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

59

6
10 8

4

13

3

20

0

6

0

14

0

7

0

6

0

8

0
4

0
5

0
3

0
3

0 1 0
3

0
5

0 1 0
3

0 2 0 0 0
3

0
3

number of words

count of documents

Figure 4.3: Distribution of the number of documents containing the removed word for

words that did (green) and did not (red) come back. The green series keeps going after 22,

but what is important to notice is that the red stops at a count of four documents.

We tried another strategy to remove words: we not only reset the count for the given

word w, but we decrease the count of every other word w0 proportionally to how much w

trigers w0, measured by p(w0|w). We reconduct the same experiment as before with this new

strategy. Figure 4.4 shows the distribution of the come-back ratio over the 300 words. The

number of words that do not come back to the topic from which they were removed stays

the same (73%). The only difference is that the second group in the histogram is slightly

translated to the left, so words that do come back, tend to come back in smaller proportion.

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1

218

1 1 2 2 6 1 8 18
31

12
0 ratio

number of topics

Figure 4.4: Distribution of the fraction of the count of the deleted word that comes back to

the topic after removal with the new strategy.

4.6 Deleting topics

We implement deletion of topics by simply removing the corresponding row in the

topic matrix � and decrementing the number of topics K by one. Algorithm 7 presents the

deletion procedure. Because the document tagging matrix � is recomputed at each epoch,

we don’t need to worry about removing a column in it, it will be built with the correct

dimensions in the next EM epoch.

Algorithm 7 Deleting topics
function DELETETOPIC(topic k)

Remove row k in �

Set K = K � 1

Here as well, as we deleted a row in the topic matrix �, columns without smoothing

don’t add up to the word occurrences anymore. But at the next epoch, all the words of the

corpus are going to be assigned to the remaining topics, and this property will be restored.

40

Experiments

In this experiment, we show the effect of deleting a topic on each of its words. The

first column of Table 4.3 presents the top words of an example of non-coherent topic, where

words are not related to each other. Next to each word, we display the discrete distribution

over topics, before and after deleting the topic. The topic to be deleted is represented in

green. We can see that the words are usually caught by the largest other topic than the

deleted one. For example, word josephus will be caught by topics 10 and 92, that was

already present in the distribution of josephus before deleting topic 42.

Table 4.3: Distribution over topics of the top words of the topic to be deleted, before and

after deleting it. Experiment done after running LDA on the corpus [20news] with 30 topics

until convergence.

Topic 42 Before After
motto 42 87 87 80

cmuvm 42 69 69

mangoe 42 1 1

34aej7d 42 10

jesus 10 4542 10 45

gargle 42 82

howl 42 0

josephus 42 10 92 10 92

tove 42 1

maharishi 42 97 1

4.7 Merging topics

When we want to merge two topics k1 and k2, we want a new topic that accounts

for all words generated by k1 and k2. We have seen that the parameters �k of Dirichlet

distribution can be interpreted as pseudocounts for the discrete distribution 'k ⇠ Dir(�k).

If we have two sets of pseudocounts �k1 and �k2 , adding them together will be as if all

pseudocounts were accounting for the same topic. We just need to remove the smoothing �

once as it is in both topics.

41

Algorithm 8 presents the merging procedure. Given topic k1 and k2, the topic k1 will

keep the distribution Dir(�k1 + �k2 � �) in slot k1 and the topic k2 will be deleted.

Algorithm 8 Merging topics
function MERGETOPICS(topic k1, topic k2)

Set �k1w = �k1w + �k2w � �
call DELETETOPIC(k2)

Experiment

This experiment shows the effect of merging two topics on the top words of each.

Table 4.4 presents the top ten words of first topic 10 (in green), and then topic 20 (in blue),

both about religion, that we are going to merge. Next to each words, its discrete distribution

over topics before and after the merge.

42

Table 4.4: Distribution over topics of the top words of the two topic to be merged, before

and after the merging. Experiment done after running LDA on the corpus [20news] with 30

topics until convergence.

Topic 10 Before After
jesus 10 45 45 20

christ 10 45 45 20

bible 10 20 20 45 53

christians 10 20 20

church 10 53 20 53

christianity 10 20 20

faith 10 20 20

lord 45 10 45 20

christian 10 20 20

resurrection 10 20

Topic 20 Before After
atheists 20 20

atheism 20 4 1 20 1 4

atheist 20 1 10 20 1

religion 20 10 20 26

belief 20 10 20

christianity 10 20 20

moral 20 39 10 50 20 39

beliefs 20 10 20

theism 20 47 20 47

existence 20 10 20

We merged topics 10 and 20 into topic 20, deleted topic 10, and run LDA until

convergence. We can see in the third column that after the merge, all the top words of both

former topics 10 and 20 are now caught by the same topic 20. We have indeed built a new

topic capturing both former topics 10 and 20.

43

4.8 Splitting topics

When merging two topics, we only need to know which topics are to be merged. To

split one topic k1 into two, we need more information; the user has to provide two sets of

words W1 and W2 as a seed to initiate the split.

After a split, we will get one more topic. We add a row k2 in the matrix �, initialize

it to �, and for each word w, we are going to move a fraction

⇢w , p(w|W2)

p(w|W1) + p(w|W2)

of the count from row k1 to row k2. This fraction is zero for words in W1 and one for words

in W2; words of Wi will be completely in topic ki. For each of the remaining words w, we

are going to move the fraction ⇢w of counts depending on how close w is from W2 compared

to W1. Algorithm 9 presents the splitting procedure.

Algorithm 9 Splitting topics
function SPLITTOPIC(topic k1, set of words W1, set of words W2)

Add a row k2 in matrix �

Set ⇢w , p(w|W2)
p(w|W1)+p(w|W2)

Set �k2w = ⇢w �k1w

Set �k1w = (1� ⇢w) �k1w
Set K = K + 1

Now computing the probability of a word vi, given some other words v0, ..., vi�1, is

hard as it requires to compute the join

p(v0, ..., vi�1, vi) =
X

z0,...,zi,d

p(d)
iY

j=0

p(vj|zj) p(zj|d)

=

X

z0,...,zi,d

Nd

D

iY

j=0

'zj ,vj ✓d,zj

This computation requires O(KDW 12
) floating-point operations, so is intractable. Another

approach would to compute this joint empirically, but we can expect for most the the word

combination v0, ..., vi that we consider, there will be no document with all those words, and

so p(v0, ..., vi�1, vi) = 0.

44

So we tackle the problem differently. Computing p(w|W1) means computing the

distribution over the vocabulary inferred by the words of W1. This is actually the same thing

we are doing for each document in the inference algorithm: approximate the distribution

that a document infers over words by a linear combination of topics. So we use the E step of

the inference algorithm, treating W1 as a document. It will give us a distribution over topics

p(k|W1), and therefore a distribution over words:

p(w|W1) =

X

k

p(w|k) p(k|W1)

This allows us to compute p(w|Wi), and therefore the fraction ⇢w for each word to do the

split.

Experiments

In this experiment, we show an example of splitting a topic. We first ran LDA on

the corpus [ap] with 30 topics until convergence. Then, we split the topic that we labeled

“Politics” in Table 4.5 using the two seed words republican and bush for the first topic and

the three words democrats, bentsen, and democratic for the other one. Running LDA again

until convergence successfully discover two stable topics, one about republicans, the other

about democrats.

Table 4.5: Topic “Politics” has been split into two topics using seed words republican and

bush for the first, and democrats, bentsen, and democratic for the second. LDA was then

run until convergence.

Before After
“Politics” “Republicans” “Democrats”
bush
republican
jackson
campaign
democratic
bentsen
election
democrats
presidential
convention

bush
republican
campaign
presidential
dole
robertson
convention
republicans
poll
election

jackson
democratic
bentsen
democrats
campaign
election
vote
presidential
governor
votes

45

Table 4.6 shows where the top words of the topic that have been split have went after

the split. General words such as campaign, election, presidential and convention are almost

equally shared between topics “Republicans” and “Democrats”, whereas words specific to

one party is almost completely caught by the corresponding topic.

Table 4.6: Distribution over topics of the top words of the two topic that have been split,

after the split. Experiment done after running LDA on the corpus [20news] with 30 topics

until convergence.

Top words After
bush 24 13

republican 24

jackson 31 24 23

campaign 31 24 5 23

democratic 31 5 13

bentsen 31

election 31 24 5

democrats 31 13

presidential 24 31 5 13

convention 24 31

4.9 Experimental Design

This section describes experiments that can be conducted at a larger scale. This

first experiment is designed to measure the effectiveness of just using the actions deleting

topics and removing words from topics. It is designed for a crowd-sourcing platform such

as Amazon Mechanical Turk (AMT) which is often used to perform large-scale experiments

(Hu et al., 2011; Chang et al., 2009; Crump et al., 2013).

We run LDA twice, first with 30 then 100 topics, on the four corpus [20news], [nips],

[ap], and [nsf]. That gives us 520 topics to evaluate. To evaluate a topic, we add a random

word to the set of the five top word and we ask users to find the intruder. If they can find it

every time, then we can conclude the topic is coherent. Otherwise, we conclude that the

topic is not coherent. Given a incoherent topic, if the distribution of the choices of intruder

by users is close to uniform, then we delete the topic. Otherwise, we delete the words mainly

46

Table 4.7: The number of times a word has been chosen as an intruder by AMT users.

Word Times
jehovah 3
elohim 1
cramer 2
henry 2
radar 2
solar 0

designated as intruder.

Here is a toy test we did on AMT with only one topic. The top words for the topic

were

jehovah, elohim, henry, radar, solar, orbit, pluto, moon, atmosphere, lunar

Picking the five first and adding a random word (here, cramer), the intruder task instance

was

jehovah, elohim, cramer, henry, radar, solar

Table 4.7 presents the result of the experiment, we asked ten different users to do the task

and we can see the distribution is quite spread out and there is no clear intruder designated.

So we would conclude the topic is incoherent and delete it at the next round.

After getting crowd feedback and updating the model, we run LDA again until

convergence. Those two steps are repeated a couple of times. We measure the quality of a

topic by the miss rate of the intruder task. Miss rate should decrease with the number of

iterations.

Incentive

When designing a survey with multiple choice questions, we have to make sure users

don’t answer randomly. On AMT, we can reject answers that don’t hit the intruder, but not

only the user will not be paid, but also it will penalize his validation rate on AMT. This is

not fair as for very bad topics, the user has no way to know which word is the intruder.

47

Another option is to give financial incentive to find the correct intruder. However,

Crump et al. (2013) have studied task performance of AMT users when varying the amount

of the financial incentive, either $2 and a bonus up to $2.5 based on task performance, or

$0.75 with no bonus. Results show that the amount on the incentive does not effect the task

performance but does effect the rate at which workers sign up for the task.

Another idea, is to embed this experiment in a captcha of a large website. Then

people will have real incentive to give the correct answer, just because it is getting into

their way to subscribe. Generalizing this, having to answer correctly an intruder question to

access a resource online will guarantee that users give an honest try to find the intruder.

4.10 Conclusion

In this section, we presented a novel way for interactive topic modeling, repeatedly

using the user feedback to kick the parameter search out of a local optimum, yielding

to better topics for the user’s eyes. By changing the internal state of the Variational EM

algorithm between epochs, we could express the most common user feedback in an intuitive

manner.

Bibliography

AlSumait, L., D. Barbará, J. Gentle, and C. Domeniconi (2009). Topic significance ranking

of lda generative models. In ECML.

Andrzejewski, D., X. Zhu, and M. Craven (2009). Incorporating domain knowledge into

topic modeling via dirichlet forest priors. In ICML, pp. 25–32.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science

and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Blei, D. M. (2012, April). Probabilistic topic models. Commun. ACM 55(4), 77–84.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2002). Latent dirichlet allocation. In NIPS.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2003, March). Latent dirichlet allocation. J. Mach.

Learn. Res. 3, 993–1022.

Campbell, L. L. (1966). Exponential entropy as a measure of extent of a distribution. In

Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, Volume 5.

Chang, J., J. Boyd-Graber, C. Wang, S. Gerrish, and D. M. Blei (2009). Reading tea leaves:

How humans interpret topic models. In NIPS.

Chuang, J., C. D. Manning, and J. Heer (2012). Termite: Visualization techniques for

assessing textual topic models. In Advanced Visual Interfaces.

Crump, M. J. C., J. V. McDonnell, and T. M. Gureckis (2013, March). Evaluating Amazon’s

Mechanical Turk as a Tool for Experimental Behavioral Research. PLoS ONE 8(3),

e57410+.

48

49

Deerwester, S., S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman (1990).

Indexing by latent semantic analysis. Journal of the American Society for Information

Science 41(6), 391–407.

Ding, C., T. Li, and W. Peng (2008). On the equivalence between non-negative matrix

factorization and probabilistic latent semantic indexing. Computational Statistics and

Data Analysis 52, 3913–3927.

Geman, S. and D. Geman (1984, November). Stochastic relaxation, gibbs distributions,

and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6),

721–741.

Griffiths, T. and M. Steyvers (2002a). A probabilistic approach to semantic representation.

In Proceedings of the 24th Annual Conference of the Cognitive Science Society.

Griffiths, T. L. and M. Steyvers (2002b). Prediction and semantic association. In NIPS, pp.

11–18.

Hofmann, T. (1999). Probilistic latent semantic analysis. In UAI.

Hu, Y., J. Boyd-Graber, and B. Satinoff (2011). Interactive topic modeling. In Association

for Computational Linguistics.

Lee, D. D. and H. S. Seung (1999). Learning the parts of objects by non-negative matrix

factorization. Nature 401(6755).

Mimno, D., H. Wallach, E. Talley, M. Leenders, and A. McCallum (2011). Optimizing

semantic coherence in topic models. In EMNLP.

Newman, D., Y. Noh, E. Talley, S. Karimi, and T. Baldwin (2010). Evaluating topic models

for digital libraries. In Proceedings of the 10th annual joint conference on Digital libraries,

New York, NY, USA, pp. 215–224. ACM.

Pantel, P. and D. Lin (2002). Discovering word senses from text. In Proceedings of the

eighth ACM SIGKDD international conference on Knowledge discovery and data mining,

KDD ’02, New York, NY, USA, pp. 613–619. ACM.

50

Pauca, V. P., F. Shahnaz, M. W. Berry, and R. J. Plemmons (2004). Text mining using

non-negative matrix factorizations. In SDM.

Schneider, K.-M. (2005). Weighted average pointwise mutual information for feature selec-

tion in text categorization. In Proceedings of the 9th European conference on Principles

and Practice of Knowledge Discovery in Databases, PKDD’05, Berlin, Heidelberg, pp.

252–263. Springer-Verlag.

Stevens, K., P. Kegelmeyer, D. Andrzejewski, and D. Buttler (2012). Exploring topic coher-

ence over many models and many topics. In Proceedings of the 2012 Joint Conference

on Empirical Methods in Natural Language Processing and Computational Natural Lan-

guage Learning, EMNLP-CoNLL ’12, Stroudsburg, PA, USA, pp. 952–961. Association

for Computational Linguistics.

Steyvers, M. and T. Griffiths (2006). Probabilistic topic models. In T. Landauer, D. Mcna-

mara, S. Dennis, and W. Kintsch (Eds.), Latent Semantic Analysis: A Road to Meaning.

Laurence Erlbaum.

Tzikas, D., A. Likas, and N. Galatsanos (2008, November). The variational approximation

for Bayesian inference. IEEE Signal Processing Magazine 25(6), 131–146.

Wallach, H. M., I. Murray, R. Salakhutdinov, and D. Mimno (2009). Evaluation methods for

topic models. In Proceedings of the 26th Annual International Conference on Machine

Learning, ICML ’09, New York, NY, USA, pp. 1105–1112. ACM.

Wei, X. and B. Croft (2006). Lda-based document models for ad-hoc retrieval. In SIGIR.

